5.1 - Randomness, Probability, & Simulation

Notes provided by E. Kelly Pendleton from Ardrey Kell High School, including:

- -the idea of probability
- -myths about randomness
- -simulation

email <u>elizabethk.pendleton@cms.k12.nc.us</u> if you need the flipchart version

^{*}adjust as you wish*

Warm-Up

- 1). A single die is rolled one time. First list all possible outcomes and then find the probability that:
- a) outcomes:
- b) the die lands on 4
- c) the roll is an even number
- d) the die lands on a number less than 7
- e) the number showing is greater than 3 or odd
- f) the number showing is greater than 3 and odd
- 2). Abby, Barbara, Carla, Dan, & Ed work in a firm's public relations office. Their employer must choose 2 to attend a conference. To avoid unfairness, the choice will be made by drawing two names from a hat.
- a) Write down all possible outcomes.
- b) What is the probability that at least one girl will go?
- c) What is the probability that neither of the two men is chosen?

5.1: Probability, Randomness, & Simulation

- chance behavior is unpredictable in the short run but has a regular and predictable pattern in the long run (EX. toss a coin)
- a phenomenon is random if the outcomes are determined by chance
- The probability of any outcome of a random phenomenon is the proportion of times the outcome would occur in a very long series of repetitions; the long-term relative frequency

Using Randomness to Determine Probability

- You must have a long series of independent trials; the outcome of one trial must not influence the outcome of any other trial.
- The idea of probability is empirical; we can estimate a real-world probability by observing many trials.
- Computer simulations are useful to simulate long run probability.

Using Simulations to Calculate Empirical Probabilities

simulation - models random events by using random numbers to specify event outcomes with relative frequencies that correspond to the true real-world relative frequencies we are trying to model

trial - what you do for one simulation

outcome - results (how many trials are a success)

Fifty-seven students participated in a lottery for a particularly desirable dorm room - a triple with a fireplace and private bath in a tower. Twenty of the participants were members of the same varsity team. When all three winners were members of the team, the other students cried foul. Use a simulation to determine whether an all-team outcome could reasonably be expected to happen if everyone had a fair shot at the room.

a) State the question of interest using the language of probability .
b) How would you use random digits to imitate one repetition of the process? What variable would you measure?
c) Run 20 trials of the simulation. [Using the calculator.]
d) After the trials of the entire class, what proportion of trials resulted in all 3 winners being from the same team?
e) What do you conclude from this simulation?

-this question can also be answered with theoretical probability:

If 20 of 57 people are on the same varsity team, what is the probability that all 3 people chosen are one of the 20 members on the varsity team?

Classwork: pg. 295 #19, 20, 31-37